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SUMMARY

During the first three months of the current contract, emphasis
has been placed on the meteorology of Mars, although some research has
also been performed on the meteorology of Venus. The following studies

are under way:

Seasonal Climatology of Margs — In this study, simple theoretical

models are developed for determining the seasonal and latitudinal varia-
tions of surface temperature and mean atmospheric temperature. In one
model, the surface and mean atmospheric temperatures are computed from
conditions of radiative equilibrium, In a second model, the effect of
the meridional transport of heat by the atmosphere is included in the

computations of the Martian temperature climate.

Diurnal Variation of the Surface Temperature on Mars -—- A theo-

retical model of the diurnal variation of surface temperature is
developed. In the model, the planetary surface receives and loses
energy by the following processes: absorption of solar radiation,
emission of long-wave radiation, absorption of atmospheric long-wave
radiation, eddy conduction of heat between the surface and atmosphere,
and molecular conduction of heat between the surface and soil layer.
This model should be more realistic than the one used by Sinton and
Strong (1960) to explain the observed indications of the diurnal tem-

perature variation at the Martian surface,




Interhemispheric Transport of Water Vapor and the Martian Ice Caps —

Since the observed amount of water vapor in the Martian atmosphere is much
less than that required to form the Martiam ice caps, it has been sug-
gested that the source of the water vapor for the forming ice cap is the
water vapor released into the atmosphere by the melting cap. Studies
have been begun to determine whether large-scale eddy diffusion proc~
esses, with reasonable values of eddy diffusion coefficients, can in-
deed accomplish the necessary shuttling of water vapor from pole to pole

within the required time periods.

A Comparison of Zonal Wind Velocities on Mars end Earth = Based

upon Gifford's (1964) data on projection cloud motions, average zonal
velocities as a function of Mertien latitude are derived. These values
are compared with average zonal velocities forthe Earth's troposphere.
The general shapes of the curves representing the latitudinal variation
of zonal velocity are similar, both being characterized by maximum
vesterlies at middle latitudes. More detailed conclusions are not
warranted at this time since the Mertian data sample is extremely small
and the interpretation of Martian cloud drifts as wind velocities =

rather than storm velocities — is open to question.

Atmospheric Circulation iu the Venugiosn Atmosnhere — Attempts to

solve by finite difference techniques the equations resulting from the
convective model of the general circulation of the Venusian atmosphere
described in our Final Report on NASw-975 have been unsuccessful. A

new approach to the solution of the equations is being investigated.
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Rather than using finite difference techniques, Fourier series solutions
are assumed for the dependent variables. By linear algebraic techniques,
it should be possible to determine the coefficients of the assumed

Fourier series.

The Composition of the Venusian Clouds — One of the arguments

that have been presented against a water or ice composition for the
Venusian clouds is based upon a2 comparison of the water vapor mixing
ratio in the Venusian atmosphere, as deduced from spectrometric obser-
vations of atmospheric water vapor abundance, with the mixing ratio
required for water vapor saturation at the temperature and pressure of
the Venusian cloud-top. Such a comparison indicates that the observed
mixing ratio is far below that required for saturation. However, the
deduction of the water vapor mixing ratio has been based upon the
assumption that the mixing ratio is constant with altitude. 1In the
Earth's atmosphere, the water vapor mixing ratio decreases rapidly
with height, especially in the upper troposphere. In this study, we
compute the water vapor mixing ratio that would be present at the level
of the Venugian cloud~top if, on Venus, the mixing ratio decreases with
altitude at rates comparable to those in the Earth's atmosphere. The
total water vapor amount is kept compatible with the observed amounts.
Comparison of the cloud-top mixing ratio computed in this manner with
the required saturation mixing ratio reveals that, under certain condi-
tions, saturation can indeed be achieved. Thus, under certain conditioms,
the observed water vapor zmounts are not incompatible with a Venusian

cloud composed of ice.
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SECTION 1

METEOROLOGY OF MARS

1.1 THE SEASONAL CLIMATOLOGY OF MARS

1.1.1 Introduction. The climate

on Mars has been a subject of

debate since the invention of the telescope. The basis for a study of

Martian climatology is the welding together of available observational

data and appropriate theory. Prior to

ments of Mars by Coblentz and Lampland

the early radiometric measure-

(1923), estimates of Martian

climatology used visual and photographic observations in order to czl-

culate surface and atmospheric temperatures, e.g., Milankovitch (1920).

Gifford (1956) has summerized radiometric measurements of Mars over

the years in a seasonal climatology of

the surface-temperature distri-

bution. Recently measurements by Sinton and Strong (1950), and by

Kaplan, Munch and Spinrad (1964), have

increased our knowledge about

the diurnal temperature variation end composition of the Martian sur-

face, and about the total pressure and

Mers, respectively. 1In light of these

Fa

the seasonal variations of the Martisn

time.

composition of the atmosphere of

recent measurements, a study of

0
a
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ppropriate ar thig

Recent research emphagis has centered around investigations of

the temperature structure of the Martian atmosphere, e.g., Goody (1957),



Arking (1963), Ohring (1963), and Prabhakara and Hogan (1965). The
results of these investigations are based on calculations using multi-
layered model atmospheres which generally apply to the average Martian
latitude and climate. In a climatological study, however, the need for
a detailed vertical temperature structure with latitude and time of year
is secondary to the inferred climatic veriations. Instead of using a
gsophisticated mulitlayered model atmosphere, this study incorporates a
single~layered atmosphere in order to reduce the computing time and to
emphasize the changes in climate. The loss in accuracy when using the
single~layered model is no greater than the error introduced by the

uncertainty in total pressure and composition of the Martian atmosphere.

The remaining discussion in this section of the report describes
the theoretical basis for two model atmospheres to be used in the study
of Martian climatology. One model, termed the "Radiative Equilibrium
Model," is used to compute the temperature of the surface and the mean
temperature of the atmosphere under conditions of radiative equilibrium.
In this model, the atmosphere is assumed stationary; i.e., there is no
transport of heat. Calculations based on the Radiative Equilibrium
Model will describe the extreme or upper limit of the seasonal variations

on Mars.

The second model atmosphere, termed the 'Radiative Model with Trans-
port of Heat," includes the meridional transport of heat in the calcula-
tion of surface and atmospheric temperatures. As is the case on Earth,

the transport of heat on Mars tends to moderate seasonal climates. The
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polar latitudes will be warmer end the equatorial latitudes will be cooler
than the climatic temperatures described by the Radiative Equilibrium
Model. A by-product of the calculations using this model will be the
variation of the meridional component of the mean atmospheric wind with

latitude.

1.1.2 Radiative Equilibrium Model. In any planetary heat budget

study, the fundamental law oI energy conservation is a bgaic assumption.
This law states that the sources of energy, principally solar or short-
wave radiation absorbed by the surface and atmosphere, are balanced by

the losses of energy, the emission of radiation to space.

The radiative equilibrium temperatures of the surface and atmos-
phere depend on the magnitude of the incoming solar energy and on the
absorbing and emitting properties of the surface and atmosphere. The
interplay of energy between the sun, Mars and space can be described by
two energy balance equations, one for the surface and the other for the
atmosphere. First, let us examine the important radiation components of
a unit atmospheric column shown in Figure 1 and then develop the balance

equations from these components.

Of the short~wave radiation incident at the top of the atmosphere (:),
a small portion is absorbed by the atmosphere (2) before reaching the
surface. A major portion of the solar radiation is absorbed by the sur-
face (:) and the remaining energy 1s diffusely reflected back to the

atmosphere (:) and to space (:). In the model, atmospheric scattering
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of energy is neglected and the atmosphere is assumed free of clouds.
The planetary albedo of Mars is controlled mostly by the assumed surface

reflectivity and to a2 lesser degree by atmogpheric absorption.

In turn the surface emits long-wave radiation @ back to the
atmosphere @ and to space @. The atmogphere emits radiation to
space directly @ and emits radiation back to the surface. A major
portion of this back radiation from the atmosphere is absorbed at the
surface ; 2 small portion is reflected back to the atmosphere @

and to space @ .

In the Radiative Eéuilibrium Model, the gains and losses of energy
at the top of the atmosphere, within the atmosphere and at the surface
must all be equal; i.e., the net radiation is zero. The exchange of
sensible heat at the surface~atmosphere interface is neglected in this

model. The energy balance equation for the surface is

4 4
(1 Rso) FBO + €y ea o Ta < o To , (1)

where Rs = the surface reflectivity to short-wave radiation

o
Fs = the incident short-wave radiation at the surface
o
€, = the surface emisgivity to long-wave radiation
€, = the atmospheric emissivity to long~wave radiation
o = Stefan~ Bo ltzmann's constent
R o
'l‘a = the mean atmospheric temperature in K
To = the surface temperature in °x.



The gainsg of energy to the left of Eouation (1), respectively, are the
absorbed short-wave radiation and the absorbed long~wave radiation emitted
by the atmosphere. Both terms are balanced by the surface radiant energy

loss.

The energy balance equation for the atmogphere is

[F -F (1-R )1-et007y30¢ ¢ o4
8 s [ a o o
t o o
= [2~-~(l-€¢)ele o T4 (2)
o/ "a° = a °’
where Fs = the insolation at the top of the atmosphere
t
T = the optical thickness of the atmosphere to short-
wave radiation
e’ = the vertical beam transmissivity of the atmosphere to
direct short-wave radiation
e-1'66T the transmissivity of the atmosphere to diffuse short~

wave radiation.

The first term in brackets to the left of Equation (2) is the solar
energy absorbed by the atmosphere, both the direct component and dif-
fusely reflected component from the surface, and the second term is the
absorbed long-wave radiation from the surface. These energy gains are
balanced by the radiant energy loss to the surface and space. The

(1 - eo) € correction term accounts for the small portion of back long~

wave radiation thgt is reflected by the surisce and abgorbed again by

the atmosphere.



In the model ztmosphere, Xirchoii's law is assumed to hold for a
given spectral region; e.g., the emigsivity equals the absorptivity for

long~wave radiation.

There are two energy balonce equations, (1) and (2), with two
dependent variables, Ta and TB; therefore, a solution for the equilibrium
surface and atmospheric temperatures is possible. After an exercise in

algebra, the solution for the surface temperature is

-1.66 1/4
(A1-R )F +e[F -F (1-R )1-e M1

= o (o] t o) o)
TO { e O } . (3)

o]

and the solution for the atmospheric temperature is

e 1-R )F +F =~-F (1-R )Q-~-ce )
a s s 8¢ 5, 5,

_ o o 1
T = -{ e (2 - e) o J . @)

The all-important energy source on which the study of theoretical
climatology rests is the amount of solar radiation received by the planet.
This can be computed with the aid of an assumed solar constant and a
knowledge of astronomical geometry. The daily energy incident on a unit

surface at the top oI the atmosphere is

S[(sin 8 sin 8) B + cos @ cos ® sin B] )
St x 4




vhere cos B = =~ ten tan B

e = the latitude of the unit area

e} = the solar declination

B = the hour angle between sunrise and noon or noon and
sunset

S = the solar constant for the Earth

d = the distance of Mars from the sun in astronomical
units.

A second component of solar radiation that is important in this study
is the insolation at the suriace, Fs . An analytic solution of this com-
ponent is not possible as in the casz of Equation (5) above since the
absorption of solar radiation by the atmosphere at each sun angle must
be summed over all angles during the daylight hours. The equation for

the insgolation incident on & unit surface area over an increment time

span, dt, is

d F T.m
50 _ s(e” )" cos ¢ 6
dt - 2 ’ (6)
d
vhere ¢ = the sun's zenith angle
m = the optical air mass.

Equation (6) is assumed to hold for all wavelengths oI solar radiation
although, strictly speaking, it applies only to monochromatic radiation.
As Fritz (1951) points out, the use of Beer's 1law in Equation (6) for
a given spectral region will lead to practical results. Illumerical inte~
gration of Equation (6) gives the solar insolation at the surface to a

reasonable degree of accuracy.



Summarizing the Radiative Equilibrium lodel, the atmosphere of Mars
is depicted as a single isothermal layer with gray spectral properties
in the long~wave and short-wave regions of the spectrum. Atmospheric
scattering is neslected; however, it is intrinsically implied in the sur-
face albedo term. Also the surface albedo determines to a great extent
the planetary albedo. The computed equilibrium temperatures of the sur-
face and etmosphere are based on the incoming solar radiation and on

the absorbing and emitting properties of the surface and atmosphere.

A more sophisticated depiction of the atmosphere could be derived
usinz a multilayered model and the method outlined above. However, it
is felt that the uncertainties in the input parameters to the model out-

weigh the bias introduced by the single~layer model.

Since the atmosphere ig assumed stationary, the computed mean daily
temperatures will represent the extreme climatic conditions on Mars.
Atmospheric circulations transport heat from warm latitudes to cold lati-
tudes, thus moderating the climate. A model atmosphere which includes

this atmospheric transport of heat is discussed in the next section.

1.1.3 Radiative Model with Transport of Heat. In the discussion

ol atmospheric heat transport on Mars, let us picture the ctmosphere as
o .
being divided into 10 latitude zones as shown in Figure 2, ond that the

radiation budget at the midpoint of each zone applies to the whole zone.

As mentioned in the previous section, the equilibrium temperatures

of the atmosphere depend primarily on the amount oI incoming solar
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radiation. Take, for example, the Martian vernal equinox where the sun

is positioned over the equator. Under these conditions the equator re-
celves the maximum amount of solar radiation with a steady decrease of
input toward both polar latitudes. Based on calculations using Equation
(4), the atmospheric temperatures decrease steadily poleward of the equator.
Consequently, a north-south temperature gradient is established, and an
atmospheric transport of heat would commence from equator to poles, sus-

tained by the differential solar heating,

Our objective in this model atmosphere is to determine the equilib-
rium temperatures of the surface and atmosphere with the transport of heat
included in the calculations, It should be emphasized again that the law
of energy conservation is assumed, and that the total gain of energy by
all the atmosphere on Mars is the same, with or without heat transport.
Likewise, the total loss of energy by the atmosphere is the same, even
though colder latitudes will be warmed by heat transport. This fact

serves as a boundary condition to the problem.

Haurwitz (1961) has studied simple models of atmos pheric circulation
that can be adapted to this problems In his model he assumes that the
temperature difference in the horizontal between two pressure surfaces
is established and maintained by some outside agency, such as differen~
tial solar heating. He shows that the resulting atmospheric motion that
is established and maintained by differential heating approaches definite
values of velocity and corresponding temperature difference. The magni-

tudes of velocity and temperature difference depend on the Coriolis

11



parameter due to the planet's rotation, on the assumed coefficient of

friction, on the rate of heating, on the dimensions of the model and not

on the initial conditions.

Rather than writing Haurwitz's equations in terms of heating rates

(degrees/unit of time), it is more convenient to write the differential

heating term in units of a radiant flux density. The modified form of

his equation for the equilibrium wind velocity is

and for the

wvhere n

— -1/2
% Po /
¢ gR fn=—
1| B 5
v 5 5 1)
fn
Po C '<} + —§.>
- P k™7
equilibrium temperature diiference is
- fz -
o g L2 K(? + 2
n k2
T - T ()
%n1 a * Po
C P R In3z=
p o P1

]

L}

"

the boundary between the n and n+l zones of Tigure 2.
The zones are numbered consecutively starting at 85 N in
increments of 10° latitude (18 zones in 21l1)

the wind velocity between adjacent zones in TFigure 2

3

(17 velocitiee in all)

Y N e ' — 2T

the differential heating in units of cal em? min~!

between the n and ntl zones
the gravity on Mars

the specific gas constant for the Martian atmosphere
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P = the pressure at the surface of Mers

P, = the bounding pressure surface at the "top of the
atmosphere" in TFigure 2

C_ = the specific heat capacity of the atmosphere at
constant pressure

K = the coefficient of friction
fn = the Coriolis parameter between the n and n+l zones
L = the horizontal dimension of the model tzken to be the

distznce between zones in Figure 2, 10~ of latitude

The differential heating between zones, @, is the sustsining source of
energy that drives the circulation. In other words, it is the heat flux
trensported across the imzginary well between zones that must be dissi-

pated in the cooler zone or transported to the next colder zone.

Since the gosls of the calculations are the equilibrium temperastures
of the atmosphere and surface, it is more convenient to use Equation (8)
which relates temperature differences to dififerential heat fluxes between
zones rather than the wind velocity in Equation (7). A correction for
zonal sreas is also necessary in Equation (8) for the following reason:
Take, for exemple, the wind velocity V1 in Figure 2, which indicates that
heat is transported from zone 2 to zone 1. The area of zone 2 is larger
than zone 1; therefore, the rediant flux density of heat transported to
zone 1, al, must be increased by the ratio of areas of the zome, i.e.,
the area of zone 2 divided by the area of zome 1. Conversely, if V1

were a south wind, &, would be reduced by the ratio of areas, the area

1
of zone 1 divided by the area of zone 2. The direction of wind, sign

13



of an and gense of the erea ratio correction ig determined by the relative
magnitudes of solar heating since heat flows from the zone of greater

heating to the zone of lesser heating.

To simplify the aigebra in this development, let us write Equation (8)
as
c (T -T ) =« ¢)
Rl ex ] n o
vhere Cn is a8 lumped term of known velues including the correction for

zonal areas An’

* P
o

A C P R Ing
n p o P1

£
g L? K(} + : >

.
-

=}
="

N

Again the equilibrium temperature achieved by a zone is calculated
from the energy gains and losges. The net rediation of @ zome equals
the export of heat out of 2 zone. The difference between the absorbed

solar radiation for a zone, call it S, equal to ea(l - Rs ) Fs + Fs -

Y o o t

FS (1 - R.s Y1 -~ e 1'601') from Equation (4) and the emitted long-wave
o o 4

radiation, e T; , Where e = ea(Z - ea); must egusl the net ewmnort of

n

hezt out of the zone azn_ - 05)' Thus, 8 set of eighteen equations

1

can be written for the energy bzlance of each zone.

14



1 a1 1
S, ~e Tl'r = (@, ~Q,)
2 2y 1~ 2
S. ~eT = (@, - Q.)
3 ~¢ 2, 2~ Y
S =e T = (@, ~Q.)
17 a 16 17
17
S10 -e T4 = o, (10)
© %18

Dased on the sign convention, a positive value of an represents a north

wind in Cquation (7); a negative value of an represents a south wind.

After substitution of Equation (¢) in Equation set (10), the energy

balance of each zone is expressed only in terms of atmospheric

temperatures.
4 2
S, =eT = =C. (T =~T_ )
4 2 2
S.-eT' = C/(T. ~T ) -c (T =-T_ )
2 a, 172, ‘g 2783 3
- ¢ e Ty =T ) - C (T, - »
817 %17 %15 I T
4 2
S;p-eT = C (T -T ) 1)
18 25 17 a1g 21y
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Equation set (11) prescribes the equilibrium temperatures of the

atmosphere for each zone. Given a value for the first temperature, Ta R

1
the value of Ta is computed using the first equation. Using the value
2 ) ,
of Té in the second equation, Tg is computed using the second equation,
2 3

etc. This cascade of temperature calculations continues until the eight-
eenth equation is encountered. The last equation is used as a test to

determine vhether the proper initial temperature was correctly chosen.

The above calculation procedure is itereted on a computer, using
different values of Tal, until the solution of atmospheric temperatures
for Equation (11) is determined.

Summarizing the Radiative lodel with Tramsport of Heat, the Radia~
tive Equilibrium Model of the last section is expsnded to include the
meridional transport of heat. The transport calculation is based on the
simple circulation model developed by Haurwitz and adapted to the
specific problem in this model atmosphere. Once the temperatures are
known for each zone, the computed values of @ in Equation (9) can be
substituted into Equation (7) to determine the mean meridional wind
component for every 10° of latitude. Also the equilibrium surface tem-
perature can be computed once the atmospheric temperatures are known
using Equation {3). The entire ccleuletion of winds and temperatures

for all latitudes can be carried out for eny time of the Martian year.

1.1.4 Status of Work and Future Plang. The status of work on the

study of the seasonal climatolony of Mars is as follows:

16



(1) A computer program to calculate the insolation at the top of
the atmosphere using Equation (5) for any latitude and time of year is
written and checked out.

(2) A computer program to calculste the insolation at the suriace
by numerical integration oI Equation (6) for any latitude and time of
year is written and checked out.

(3) A computer program to calculate the radiative equilibrium
temperatures of the surface and atmosphere, using Equations (3) and (4),

is written and checked out.

Future plans during the next three-month period include:

(1) The modification of the program in paragraph (3) above to include
heat transport as discussed in the previous section and specified by
Equation set (11).

(2) A search of the literature for the latest information about
measured parameters on Mars for input into the model atmosphere.

(3) The calculetion of the seasonal climatology of Mars based on
both models and evaluation of the results.

(4) The exploration of possible improvements in the model atmos-
pheres. Tor exeample, changing the surface albedo after formation of
the polar ice cap, including the sensible heat transfer at the surface-
atmosphere interface, and including heat conduction into the surface

layers and heat storage in the suriace and atmosphere.

17



1.2 DIURNAL VARIATION QF THE SURFACE TEMPERATURE OF MARS

1.2.1 Introduction. For the design of spacecraZt to land on the
planet lMars, knowledge of meteorological parameters in the Martian
plenetary boundary layer is required. Pressure, wind, and temperature
are o prime interest. In this section, the diurnal variation of the

surface temperature of Mars is considered.

Sinton and Strong (1950) obtained observational indications of the
diurnal variation of Martian surface temperature. In a theoretical
model, they attempted to reproduce the observed diurnal variation. They
considered the planetary surface to be heeted by solar radiation, and
cooled by emission of long~wave radiation and conduction into the soil.
The theoretical results were somewhat different from the observational
results. The major reason for the discrepancy may be the neglect of
the effect of the Martian atmosphere on the surface temperature. This
effect ig twofold = a heating of the surface due to downward long-wave
radiation by the atmosphere and an exchange of heat between surface and
atmosphere by eddy conduction. The purpose of thig study is to develop
and utilize an improved theoretical model = one that includes the effect
of the stmosphere — for determining the diurnal variation of Martian sur-

face temperature.

1.2.2 Differentigl Equation. Our model consists of two semi-
infinite layers = the atmospheric layer and the soil layer ~ on either
side of the planetery surface. In the atmospheric layer we assume that
there is no mean motion and that, because of the small amount of water
vapor and carbon dioxide, radiational heat exchange is negligible com~

pared to eddy conduction of heat. Thus the fundamental equation for the
18



atmospheric temperature is the equation of eddy conduction of heat,

% = é‘i‘(’cg%> » 0gzgs> (12)

vhere @ = potential temperature

K = Sl-:' = exchange coeificient of heat

Ik = coefficient of diffusivity
p = atmospheric densgity
¢ = sgpecific heat at constant pressure

z = vertical coordinates with origin at solid surface and
positive in the upward direction

t = time .

There have been many expressions for k by various workers. 1In
general, it is a function of height, wind shear and thermal stability
(Lettau, 19Y51; Estoque, 1962; and Wu, 1965). Since we are primarily
interested in the surface temperature, the form of the exchange coeffi~

cient of diffusivity, k, can be chogen as
k = K (z + z,) (13)

where Z(_ is a conmstant (Lettau, 1951). This expression has also been

used by Haurwitz {1236) in the study of the daily temperature period in
the lower layer of the Ecrth's atmosphere. Their results agree reasonably
well with the observed data. Now after substituting Equation (13) into

Equation (12), we obtain

19



2 k/a

!
= l_‘.. (1 +az) -a—g..*..i.%g.
c 522 pc Oz

S

o 0<zgw (14)

vhere k! = Kz , and Q@ = L .
=0 z,

For the soil layer, the di“ferentisl equation oI heat conduction
is similar to Equation (12) except that the diffusivity of the soil, Ko
is different from that of the atmosphere. The differential equation of

the conduction of heat in the soil can be written as

ot azrs
= K ~~<zg0 , (15)
t 8 322
vhere T8 = temperature of the soil
K
K= —=- = diffusivity of the soil
8 PeCs

Z; = thermal conductivity of the soil
Py ° density of the soil
c, = specific heat of the soil .

If the solutions for Equations (14) end (15) can be solved for
suitable boundary conditions, then the surface temperature can be ob-

tained. The boundary condition will be discussed in the next section.

1.2.3 Boundary Conditions. The magnitude of the temperature must
be finite both in the soil and the stmosphere at a larze distance from
the surface. The quantity, z, is taken as zero at the interface of the
atmosphere and the soil and increases with height. It is assumed that

Ts’ 6 < at z =4 (16)

20



The remaining two boundary conditions will be deduced at the interface,

z=0. It is natural to assume that the temperatures are continuous at this

/ interface, i.e.,

( Ts =0 atz2=0 . (17)

Since we want to study the diurnal march of the surface temperature,
‘ the source of the energy input is the direct insolation from the sun.
Because of conservation of energy, there must be an energy balance at an
infinitesimally thin layer at the surface z = 0. Thus, the algebraic

sum of the energy flux must be zero. Then,

R+R +F +F +S5 = o (18)
a a s

&
]
o
=3
i

long=wave radiation from the surface
R_ = back long~wave radiation from the atmosphere to surface

F_ = the flux of energy at the surface due to eddy heat con~-
duction between surface and atmosphere

F = the flux of emergy at the surface due to molecular heat
conduction between surface and soil

S = 4insolation at the surface .

If we assume that the conductive flux is in the direction of +z, then the

upward flux can be written es

08 - aTs
-« 5 or K5

and the downwerd heat flux, in the negative direction of z, is
30 - B
k- o 5%
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If, in Equation (18) a dovmward flow of energy at the suriace is considered
negative and upward flow at the surfece positive, the different terms in

the equation of energy at the interface can be written as

R = ¢ T4 R = -a1rIA
s a s
oT
o8 _ .z s
Fa =k dz'z=0 Fs = Rl
§ = ~-uI_(sin ¢ sin d + cos ¢ cos & cos ']
where ¢ = Stefan-Boltzmann constant

a = fraction

M = one minus the planetary albedo
I, = the solar constant

¢ = latitude

8 = solar declination

1

solar hour angle .

In the expression for the back radiation from the atmosphere, Ra’
it has been assumed that this quantity is some fraction, &, of the long-
wave radiation from the surface. Recent computations (Ohring and Marieno,
1965) suggest that @ is about 0.15.

Finally, the energy equation can bé written a2

o/
H
(7]
~
-
8
~~
[+/]
oo
=)
-
[«
be
=]
o
+
(2
o
w
<
[v]
o
]
o
0
o
®
- &
A

0

= 0 (19)
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in which the upper part of the last term is for the daytime and the lower
part, for the nighttime. It is possible to express the second and third
terms of Equation (19) as functions of surface temperature. Procedures
for accomplishing this are discussed in the next section. Once this is
done, the only unknown in Equation (19) will be surface temperature.

Then, Equation (19) can be solved for surface temperature.

1.2.4 Solution of Conductive Heat Flux due to Atmosphere and Soil.

Since the purpose of this paper is to study the diurnal variation of the
surface temperature of Mars, we are only interested in the periodic part,
not the transient part. For the periodic solution, a common form of solu-
tion is Fourier series. However, since Equation (19), a nonlinear
equation, is the final equation for the temperature solution, Fourier
series is not adequate. The method used here is basically due to

Jaeger (1953).

If the surface temperature has period T, starting from any arbitrary
point, we then divide the period T into N equal intervals. Then we as~
sume a step function at the surface with unit temperature at the first
interval and the rest of the intervals remain at zero. The periodic

part of the solution for a unit cmplitude can be expressed as follows:

o(t) = O t<0
o(t) = O wl + Ty < t < (@H)T

I

where T, is an integral multiple of N

1 , and m is an integer.
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Dy Laplace transformation, we have

oo ®  (w+l)T
v = f e Pt o(t)dt = Zf o(t) e Ptat
o m=0 mT
00 T :
-’ -’ ’
= Z empT f e pt o (tr)dae’
m=0 o
N ~mp T 1 ~pt!
= Z e f e i/’ .
m=0 o
Since I
' e-mpT - 1
1~ e-pT
m=0
it follows
3. = (1 - e-pT ) (21)
p€l - c )

Now the solution of spatial part of the Laplace transformation of Equa~
tion (14) with an assumed initial condition 6 =0 and unit surface

temperature 1is

§ = Ak [2q(1 + a2t 2] + B1 2001 + az) 2 a]

where I s K equals the modified Dessel function of the first and second
kind of order zero, respectively

q quals ( >1,2

A,B equal functions of time.
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Since 6 is finite at large distances, B must be zero. Applying the bound=-

ary condition at z=0, one obtains

= 15

(22)
K, (2q/2)
and
§ = ) K [2q(1 + az)Y%/a] (23)

R (29/@)

(1t es is the amplitude at the surface, the total transformed temperature

will be 6.6.)
The flux due to a unit temperature 9 is

1/23(1:) . 'K1[2q (1 -{-O!z)llzla]

KS(Zqﬁd)

(pck?) ™’

E: = <k’ (1 + az) %—z— = (p)

(24)
where K1 is the modified Bessel function of the second kind of order one.

By the inversion theorem, fa can be written as

-pT
ctio pt 1/2

e . Le2a 4 anyl/? e (1~e ) Kl2qQ +az)""/a] \
cmio P o $29/G)

(25)
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At the surface z =0, fa for all time t is simply

c-iw -pT
- ggck'zllz Jf pl'(1 - ¢ 1) . Ko
21(' .. -
a t Joa - N T2 p1/2‘}

th

cmiw

k!
1 = e .
where Ko

o]

©

The integrand has a branch point at p=0 and simple poles at p = * 2nni/T
with n = 1,2, ... n. The contribution to Equation (28) from the branch
point p=0 is

| xT
_Jock! -n/zf - 1)[500\ 12 )3 G '1/?)+Y (A A7 DY, O <172y
210

- dx

L xa- Dlogt?) + 2o 1]

(27)

where Jn"Yn = Bessel functions of the first and second kind of order n

respectively, and )‘o = g-(lco)-]'/z . It is seen that this quantity is the

transient part of the solution of Equation (26). The contribution to

Equation (26) from the residucs at the poles p = = 2nid wvould yield a

- T
series of terms with period T. The steady periodic solution would then

be the sum of this series. However, instead of evaluating the residues

now, let us represent this periodic solution by fap' Then the complete

’

solution iquation (26) for all time t, containing both the periodic and

transient parts, can be written as

xT
\ o wxt 1 1/2
;= ockf e-nlzf e (1 e I Ox
1 - -

N
Tt
a ap 2 o \fﬁ(l - OXT) [Jz(kx

vz vz 12

Y s )]
)+ 1702

)J].(:\ )+Y \)\.X

1/2

dx

(28)



The quantity fap is the periodic solution which we are actually interested
in. The second term is the transient part that will tend to be zero at

t -» @, The reason we do not want to evaluate the residue to determine the
periédic solution by suming the series is that the solution may converge

rather slowly and clumsily, We want to write the solution in an integral

form by comparing this result with another solution for the £irst period.

For this first period, g(t) becomes

00

¢ =’Afe-pt°1-dt;

o
= 1/p 0<t< Ii o (29)
and

oo}

ry =fe-pt°1-dt
o]
T

(]
-
®
1
g
(a3
o
et

-PTl
ama-e b, 1< . (30)
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It follows then that the corresponding flux is

[ =Xt
(k'pce )1/2 J/\ e (JOJ1 + YoYl)

f = dx, 0<t<T,, (3l)
al 2x Jx (JZ + YZ) 1
o ) o
o axt XT1
(k,pce-ﬁ)llz ve  (L-e )(.IIQJ1 + YOY]_)
£ = - > 5 > dx, 'r1< t « (32)
an Nx (3% + %)
o ) )
vhere Jn, o= Jn(lxllz), Yn(lxllz), respectively. Substituting Equa-

tions (31) and (32) into Equation (28) yields

- ) T
(k’pce.n)ll2 é * G, J YY) . exnl
e fp. = P =7 /L 9%,
P1 Vx F+ D) 1- ¢

af<t<wl+T, , (33)

and

Y2 A (J 3 LY xTy +xT
p - (klpce Ty Jf [ e - (é_ o f)] dx, (34)
2P, Jx (J +Y 1=~ &

mT+T1<t<(m-i-1)T.

Now taking the average of Equation (33) in the first interval 0 < t < T1 =
T/N, and letting xT = gz, the average fluz intc the zir due to 2 unit

temperature at the surface for the indicated interval will be
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2
T/N - 0 - £ - - - N-1,2
) =ﬁff at = L (&Lece“)”zf [e""< v) 1][1 e""( N ]
a’l T apl L2\« " 5
o o 2 - et
3, -
2y

mT<t<mT+T1 (35)

in which the srgument of Jn and Yn is >‘o (T)ml/2 where ( )1 = the average
flux of periodic solution at the first time interval. And similarly, for

the n~th interval, it is

nT/N
N
(fa.)n T f fapn de
n=1

N

1/2 (y_gce Y)l/Zf exp (~nf %- rp( -‘—E ) [1 exv( ‘F"z‘][-? J, ¥ Y1]

20 - et ) (32 + ¥

aT+T. < t < (m+l)T (36)

1
The argument of J or Y is again lo(T)-I/Z.

If the average amplitude of the surface temperature in the successive
Z=th interval is 93 (£ =1,2, ... n) then the average flux inte the 2ir in
the n~th interval is

N

fan = Z 9!, o(fa)n--z-i-l * (37)
2=1
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Similarly, the solution of the average flux into the soil due to the
unit surface temperature based on the differential Equation (15) for the

first and n~th intervals are
oT 1/2
=P 8 _ . __ 1/2 . 2N
Eh =8 5% ~ ;) {%N 1/2

f ) F‘l}

§ (1-e g )

for T < t < mT%Tl (38)

and

€)=~ ( 9) {zn” taV22 @=1)Y2 - (n=2)]

qu ""(""5>[1’ ot >].°""< ]dg}

21 - e5)

(n=2,3, L) n) Y

L%
[$]

~m
“aae

Tl <t < medT . (39)

If the average amplitude of the surface temperature in the successive f-th

interval is T . (£ = 1,2, ... n), then the average flux into the soil is

sl

30



=

F o= ) Tt .
s /, sﬁk s)n»£>l (40)
Then substituting Equations (37) and (40) into Equation (19) and using

Equation (17), one obtains

N 11

A ) C\ :
(1=~ a)GTS.E +ZTS£ (fa)n_£+1 5 iTsz(fs)n-E-i-l - #I_(sin ¢ sin B
£=1 £=1 .

+cos ¢ cos B cos ‘4/)2 =0,

Z = 1’ L2 n L] (41)

!

The last term can be computed for diiferent latitudes, solar declina-
tions and hour angles. During the night this term should vanish, For
special cases, at the equator (¢ =0), for a given date, the last term

of Equation (41) may be written as

. l—LéScos?.zr'l%, 'Z"<t<’2-'l‘,
1 -4 t r
rz S cos 2x T ={ 42)
0 » otherwise,
where A = planetary albedo

S = solar constant at Larth's distance Zrom sun,

r = distance to the sun in astronomical units.

Equation (41) is actually a set of I quadratic algebraic equations, which
can be solved numerically by hand computations or electronic computer.

Such computations are planned for the next quarter.
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1.3 INTERHEMISPHERIC TRANSPORT OF WATER VAPOR AND THE MARTIAN ICE CAPS

1.3.1 Introduction. One of the fundamental problems of the meteor=~

ology of Mars concerns its ice caps. The amount of water vapor in the
Martian atmosphere is about 10-3 g cm-z. The thickness of the ice caps
is of the order of 1 cm. During the course of the Martian year, as one
polar ice cap forms, the other sublimates and completely disappears. The
amount of water vapor in the atmosphere, even if it were all to condense,
could not account for the formation of the ice caps. Thus, it has been
suggested that, as one ice cap melts, the water vapor released into the
atmosphere is transported to the opposite pole, where it condenses. At
any one time, then, most of the Martian water vapor is located in the
polar caps. During each Martian year, there is an atmospheric shuttling

of water vapor firom one pole to the other.

There are two possible atmospheric mechanisms that might accomplish
the required transport: a mean meridional velocity and large~scale
atmospheric diffusion. The rate of transport from one pole to the other
is probably greatest during the equinoctial seasons, when one cap is melt=-
ing and the other is forming. During these seasons, the Martian tempera~
tures are probably highest at the equator and lowest at the poles. With
such a temperature distribution, a meridional circulation system would
be characterized by equatorward motion at the surface and poleward motion
aloft. The mean meridional velocity pattern required to explain the ice
cap formation is characterized by a surface flow from the melting polar

cap to the forming polar cap. Obviously, the required flow is not

32



compatible with the probable flow pattern during the equinoetial geasons.
As the solstice approaches, the summer pole heats up and may become the
hottest point on the planet. A meridional circulation system at this
time would be characterized by flow from the summer pole to the winter
pole at upper levels and the reverse near the surface. Again, the re-
quired flow — from summer to winter pole near the surface — is not
compatible with the probable Martian flow pattern. Thus, a mean merid-
ional velocity does not appear to be a satisfactory explanation of the
interhemispheric transport of water vapor. We have begun to investi-
gate whether the other possible explanation — large~scale atmospheric
diffusion — is reasonable, and to determine the values of the large~
scale diffusion coefficients required to accomplish the required trans-

ports of water vapor.

In the Earth's atmosphere, large~scale latitudinal transports of
heat, momentum, and trace substances, such as water vapor, are accom=
plished by large~scale eddy diffusion processes. There are indications
that within an individual hemisphere thorough mixing of a trace constit~
uent can occur over time periods of the order of months (Junge, 1962).
Interhemispheric mixing times, on the other hand, have variously been
estimated to be from 0.9 years to 4 years (Junge, 1963). For the
Martian ice cap cycle, an interhemispheric mixing time of the order of
one Earth year is required, since a complete ice cap cycle is completed
in about two Earth years. Such a mixing time does not seem improbable

when compared with the above values for Earth.
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In the following discussion, we describe a simple global diffusion
model, in which water vapor is released into the atmosphere by the
melting of a north polar ice cap on Mars. With reasonable values for a
large-scale diffusion coefficient, we calculate the latitudinal variation
of water vapor as a function of time to see how rapidly the water vapor
can proceed from one pole to the other. In future models, we plan to
include both a source (the melting polar cap) and a sink (the forming
polar cap) in a more realistic, periodic mocdel of the seasonal varia-

tions of atmospheric water wvapor.

1.3.2 Discussion. Several models of the transport of water vapor

on Mars are being developed. 1In these models, the transport of water
vapor is entirely due to large-scale meridional diffusion, with a

diffusion coefficient, K, independent of latitude.

The concentration of water vapor, q(u,t)(grams/cmz), vhere B = sin @,
0 being the angle of latitude, and the sources and sinks, Q, (u,t)(grams/

cmzlsec), are related by the following equation:
3 . k3|2

where a is the radius of the planet.

Since the set of Legendre polynomials, Pn(p) gatisfies the equation

ai’ 2 5Pn(l1) :
A mr"—]

= n(n+l) Pn(u) s (44)

q(e,t), and Q(u,t) are expanded in Legendre polynomials:
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©0

qu,t) = Z q,(t) B () (43)
n=0

Qu,t) = Z Q ()R () , (46)
n=0

where the coefficients, q, and Qn’ are functions of time. Taking the

Laplace transform of q(u,t), Q(t,t), and %% , we get

]

q@,p) = Z a, (@) B () (47)
n=0

Q,p) = Z Q (@) B (1) (48)
n=0

L {2—;’-} - Z fp @ () = q ()1 B_() . 49)
n=0

In (49) the set,{qn(o)},are the coefficients in the expansion of q(u,0),the
initial concentration of water vapor. Inserting Equations (47), (48),

and (49) into Equation (43), we get

Z[p&n@) - q,(0) + (n) (@) j%&'ncp) - ®IP W@ =0  (50)
n=0

which gives the following equation relating an and En ]

- [Q (@) + q(0)]
q,(®) = X (51)
p +3 (@) (tl)
a
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To obtain the inverse transform, we use the convolution theorem,

t
LA [ cmsemed = T - 50 52)
o]

“®) = Q&) , and
1

P+ () ()
a

where

gp) =

Thus, the equation relating the source coefficients and the concen=~

tration coefficients is:

. t .
qn(t) = d/\Qn(x) exp<;f%(n)(n+1)(t~xi> dx + qn(O) exp -j%(n)(n+1)€>
3 ,

(53)

In the first model, the source is due to the sublimation of the
north polar cap. The cap has a constant thickness of 1 cm from 60° to
900, and it is assumed that all the ice vaporizes at the instant t=0.
The simplest approach to this problem is to consider Equation (43) as
an initial value equation where the source, Q, is zero for all time,
and at time t=0, the initial concentration of water vapor q(u,0), is
1 gram per square centimeter from 60° to 90° and zero elsewhere. Thus,
Equation (53) gives

q,(t) = q (0) exp -:Kz-(n)(nﬂ)t) (54)

where qn(O) is the n~th coefficient in the expansion of q(u,0).
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Sample computations were made by expanding q(i,0) in the first nine
Legendre polynomials, Po, Pl, soe PG’ and obtaining the corresponding
coefficients qn(t), for t=0, 1 month, 2 months, ..., 6 months (these are
Earth months). Figure 3 is a graph of q(u,t) as a function of p for

10 cmzlsec. It is seen that the curve,

these times, and for K = 10
q(,0), is not fitted too well with the first nine Legendre polynomials.
However, due to the exponential factor in Equation (54), these perturba-
tions become negligibly small in the remaining curves. It can be seen
that with this model water vapor first arrives at the south pole during
the second month after the release of water vapor from the northern

hemisphere ice cap. By the end of six months, the water vapor is evenly

distributed throughout the planet.

In the second model, a2 more realistic source function is used. In
this model, at the instant t=0, only the ice at the edge of the north
polar cap vaporizes. Then, as time goes on, the ice cap recedes toward
the north pole as the perimeter of the cap continually sublimes and gives
off water vapor to the atmosphere. The source function in this model
is given by

2%
{A[l - cos & (TR My = vt)] , uo-hrt <u< u°+vt+i\u

Qu,t) =

0 , otherwise

>

where A is the amplitude, ”o is the sine of the latitude where sublimation
begins at the instant t=0, Ap is the width of the source function, and v is
the velocity of the recession of the ice cap toward the pole. Numerical

computations with this model will be completed in the near future.
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1.4 A COMPARISON OF ZONAL WIND VELOCITIES ON MARS AND EARTH

Gifford (1964) has summarized information on Martian yellow clouds
that displayed movement. He divided Martian yellow cloud occurrences
into two groups — those that were observed on the disc of Mars and
those that were observed as terminator projections. Gifford suggests
that the first group of clouds is located near the surface of Mars
while the second group is located higher in the atmosphere. Gifford
also presents information on observed drifts of these clouds. From
these data, we have computed average zonal velocities as a function of
latitude for the projection clouds. In Figure 4, we compare these data
with average zonal velocities observed in the Earth's atmosphere. The
values for the Earth's atmosphere are based upon an average of the mean
zonal velocities presented by Obasi (1963) for southern hemisphere win-
ter and summer. Obasi's values are derived from observations between

850 mb and 50 mb during 1958.

It must be realized that the number of Martian observetions is
extremely small — about 25. Nevertheless, the similarity between
the zonal velocities in the two atmospheres is quite interesting. On
both Mars and Earth the zonal west wind increases with latitude to a
maximum at middle latitudes and then decreases towards the poles. This
comparison suggests that the circulation patterns of the two planets
may be quite similar. There is, however, an anomalous decrease in zonal
wind on Mars between 20 and 40° latitude. This may be due to the lack

of representative data for Mars, or it may be real.
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Mgure 4. Comparison of latitudinal variastion of mean zonal winds on
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There is one other problem in connection with the interpretation
of the projection cloud drifts. We have essumed that the cloud drifts
are representative of atmospheric wind velocities. Another interpreta-
tion is possible. It may be that the cloud drifts represent motions
of entire cloud systems and, thus, velocities derived from such drifts

may refer to storm translation speeds rather than atmospheric winds.
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SECTION 2

METEQROLOGY OF VENUS
2,1 ATMOSPHERIC CIRCULIATION IN THE VENUSIAN ATMOSPHERE

The convective model of the compressible atmosphere proposed in the
previous Final Report (Contract No. NASw-975) was develeped in order to
study the general circulation of the Venusian atmosphere. Unsuccessful
attempts were made to solve the resulting sixth order linear ordinary
differential equation by finite difference techniques. Present techniques
for solving a difference equation of order higher than two usually lead
to numerical solutions with rather large errors. Apparently, these tech-
niques failed completely in our attempts to solve the sixth-order differential
equation. A new approach to our problem of convection in a compressible
atmosphere is developed here. Instead of using the finite difference tech-
nique, we assume a set of Fourier series solutions for dependent variables.
The coefficients of the terms of the Fourier series will be finally deter-

mined by a linear algebraic method,

Instead of obtaining the solution for the sixth-order differential
equation (94) or (95) of the previous Final Report (Contract No, NASw-975),
we retain equations (87) and (88) in their original form and combine (83},
(86) and (89) to eliminate 3 and ;. This process leads to the following
equations:

A

A
1T = dw ’ (55)
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b3=<%l-n>’v; , (56)

g T= vpo(z)L?a -2 (oo ()11 - ¥ po(z)DLG +5§5‘i p (LG, (57)

where L = crb2 ’
dz
B
D= dz
oT (-1)T
=L o ° |=
¢ = P [ Sz + (2 ] constant ,
pV7 1- K%
s * (22 ) Kk«
po(z) gTs (1 Ts ]
K, T
L 22z
H(z) = —_ <} -
Kyl 7 TS ’

(for an explanation of other notations, please refer to the Final Report,

NASw-97 5) .

Now use the transformation for z

N
1
Al
N

where h = the depth of the atmospheric system. Then Equations (55), (56)

and (57) become

~ A
L,T= 0w, (58)
ba=(=4-0D,)% (59)
N T ’

2 ~ A A ’ A
Eq- 5. A gv(h
> B T= v, Lav b, D*po*]L*u b, Poslalu ¥ Bb,, <‘n owlx ?
(60)
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where L* = 3 - O'b* ?
dz*
= 4
P+ = 4z, ’
bh
b* = ‘;“' )

L4
%
1
L3
7N
alo
S
N

Aok
_ P7% 7h “s
Pou = T, \' " T % ’
8 5

Kx

T %
e X s (,_2Xh
he = %1 o \! " Tx z*>

-

A )
Since the boundary conditions for u and w are zero at z, = 0 and 2, = =,

~ N
it is natural to assume the solutions for u and w in Fourier sine series

as oo
G=-g§-‘u sin 2z (61)
n /), 8 * 2
=1
and b
A—Ey 62)
w—ﬂ_‘wmsinmz*. (
=1l

The boundary conditions for T are somewhat different, i.e.
T=1T , at z, =0,

and

T=10 , at = x .
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It seems that a sine series would not be very adequate for the form
for ; in this case since the sine series will not yield the correct boundary
condition at z, = 0. However, assuming the solution of T as a sine series
in the domain within the boundaries is quite legitimate. Although the sine
series would converge rather slowly near the lower boundary, a representa-
tive solution can be obtained close to the lower boundary if enough terms

~
are included, The boundary condition for T at the lower boundary can be

introduced into the solution by the following method.

1f we substitute (62) into (58), multiply both sides of Equation (58)

by sin mz,, and integrate with respect to z, from O to =, then we have

T2
F d £ : . o 2
J 2 T 8sin mz*uz* - Vo, J
° dz, o

=1 >
A
3D

mz dz. = 6, w . (63)

ad
hiata wR m
Now, integrating by parts the first term on the left hand side and using

the boundary condition T = 0 at z, = x and Tm = Tg at z = 0 ylelds

I

+ ng + m2 u/\ T sin mz,dz, . (64)
o
Assuming
A 2 z
T=< Z Tn sin nz, , (65)

n=1

and substituting (65) and (64) into (63), one obtains

2 2
mIg + m"(1 + ob, )Tm =0
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or

o, T
T = o ———E (66)

™ wf1 4o, w( + b))

Now substituting (61) and (62) into (59) and multiplying by sin £z, and

integrating with respect to z, from 0 to x, we obtain

-]
=2 L
= b Z v f i, sin wz, sin £z, dz, . (67)
=1l o

Similarly, substituting (61) and (62) into (60), multiplying by sin nz,

and integrating with respect to z, from 0 to 7, we obtain

YA IR ﬂ,,
W 2@ [ o

m=1

(D*po*)L*(uz sin £z,) sin nz,dz,

D*L*(uz sin zz*)po* sin nz,dz,

!
/

+_§%‘ (%) f Li(u, sin £z)p . sin ﬂz*dz*} ‘ (68)
=1 o

The third teim of ¢ ght hand eide of (68) contains a third derivative
of u or sin £z, with respect to z, under the sign of integration. It
is worthwhile to mention here that we cannot take the third derivative of

sin £z, directly, for we have no knowledge of dzu/dz*2 at the boundaries.
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Then the third term

Instead we must integrate the third derivative once.

on the right hand side of (68) becomes
©0 7T 00
' L,(u, sin £z,)p . sin nz dz, = - L y u (zz+ ob 2)‘
AL %P os %9 %% b, L. 4 *
= =1
7

S f d
dz,
o
T
22+ b 2) cos nz,sin fz,dz
uz( ob, no . " +9%

=1
00
(Y] .
. f d:: sin nz, sin £z*dz* - -]-3';- z
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.y
b*

[N

(69)

After substituting (69) into (68) and canceling out the second term of (68)

with the first term of (69), one obtains

bl
2 0
T = 28y /= N - }_' W (mz + c.,*z) r n . sin mz,sin nz,dz,
n gxn Kh/ 1 7, m J o% *x %%
=1l o
© 7
-}-S’u(22+ 0’b2)~n' p_  cos nz,sin £z, dz
- b2 L, 2 % o% %* % %
=1 o
7t
(70)

(-]
h 2 2
- -Bg-g; <?t> Z uz(ﬁ + Ob,, )fpo* sin nz,sin fz,dz, },
=1 o

or, in a concise form,
©

2 o
Tn = zg%tl (%){- Z wmh(man) - ‘bl; z “zg(ﬂ'n)} ’ (71)
w1 =1

where
sin mz, sin nz,dz, (72)

T
h(m,n) ==(m2 + crb*z)f Pos
: o
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and
n
g(g,n) = (22 + cb*z) *n - Jr Doy COS NZy sin £z,dz,

o
x
h 2 2
- % (.;.t> (4" + ob, )f Poy Sin DZysin fz,dz, . (73)
o

Substituting (66) and (67) into (71) one obtains

_26v< ){ Z wh(m,n)+(b 7 iiw [fntz*)

=1 =l o
¢*w T
° sin mz, sin zz*dz*]g(z,ni} - n 5 = g 5" . (74)
n(l + ob,") n(l + ob,")

If we truncate the Fourier series at the 30th term (4, m, n= 1, 2, ..., 30),
then a 30 x 30 matrix will be eventually solved in order to obtain wm(m =1,
2y 4eey 30). Thus, the vertical velocity can be obtained as a sine series
with determined coefficients. Once the vertical velocity is obtained, one
can obtain the temperature and horizontal velocity from Equations (62) and

(63) respectively.
Numerical evaluation of the matrices is planned.
2.2 THE COMPOSITION OF THE VENUSIAN CLOUDS

2,2.1 Introduction. From an analysis of the near infrared reflection

spectrum of the Venusian clouds, Bottema et al., (1964) have concluded that
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the clouds are composed of ice crystals. Arguments against ice (or water)
clouds on Venus have been given by Sagan and Kellogg (1963) and, more re-
cently, by Chamberlain (1965). These arguments are based upon a comparison
of the water vapor mixing ratio derived from the observations of water
vapor amounts above the Venusian clouds and the required saturation mixing
ratio for condensation at the observed cloud-top temperatures. Such a“com-
parison indicates that the water vapor mixing ratios are below those
required for condensation. However, the computations by Sagan and Kellogg,
and Chamberlain, are based upon the assumption that the water vapor mixing
ratio is constant with altitude above the clouds. This is not necessarily
the case. In the earth's atmosphere;, for example, the water vapor mixing
ratio generally decreases with altitude. In this section, we investigate
whether condensation can occur at the cloud-tops, if the water vapor mixing
ratio decreases with altitude at rates comparable to those in the earth's

atmosp here.

2.2,2 Discussion., The water vapor mixing ratio is defined as the

ratio of the density of water vapor to the density of the dry atmosphere
containing the water vapor. However, to a high degree of approximation,
it can be represented as

p
= =¥
w 5 (75)

where w is the mixing ratio, Py is the water vapor density, and p is the

total density of the atmosphere. Spectroscopic observations yield the
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total amount of water vapor above a given reflecting level, which is

equivalent to

with units of g cm‘z. The results of several such observations are shown
in the second column of Table 1. It may be noted that Bottema et al.(1964)
give two different values based upon two different reflecting levels, while
Spinrad (1962) gives only an upper limit to the possible amount of water
vapor., If it is assumed that the water mixing ratio is constant with alti-
tude, its value can be obtained as follows. From the definition of mixing

ratio

P, = WP (76)

Integrating both sides with respect to height, and using the hydrostatic

equation, we have

[+ <] o0
= =¥
[o,e-w [ow=¥s, )
Z F4

where P, is the pressure at the reflecting level, and g is the gravita-

tional acceleration, The mixing ratio can then be written as

W= fpvdz /(pz/g) . (78)
v /
Z

Table 1 indicates the results of such computations in the column labeled

k = 0. The saturation mixing ratio is

s m p z
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vhere mv/m is the ratio of the molecular weight of water vapor to the
molecular weight of the Venusian atmosphere, and &g is the saturation
vapor pressure. If we assume the molecular weight of the Venusian atmos-
phere is equal to that of nitrogen, mv/m = 0,64, If the cloud-top
temperature is 235K, then eg = 0.16 mb, and w, = 1.15 x 10.3 for a cloud-
top pressure of 90 mb and 1.7 x 10-4 for a cloud-top pressure of 600 mb.
It can be seen from Table 1 that the constant mixing ratios are much less
than the saturation mixing ratios. On the basis of similar computationsg,
Sagan and Kellogg (1964) and Chamberlain (1965) have questioned the

aqueous nature of the Venusian clouds.

Gutnick (1962) has analyzed the variation of water vapor mixing ratio
with altitude at middle latitudes in the earth's atmosphere. In the
troposphere, the average mixing ratio decreases logarithmically with
altitude. Such a decrease can be represented by

d /nw_ _
e k . (80)

Gutnick's data indicate that the average value of k is about 0,375 knfl

between the surface and 7 km, and about 0.56 kmfl between 7 km and 14 km.

1If we assume similar variations of mixing ratio with altitude above
the Venusian clouds, keeping the total water vapor amount consistent with
the observations, what mixing ratios would be obtain at the cloud-top?

We have

wE w_oe (81)
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for the variation of mixing ratio above the clouds. For constant mixing
ratio, k = 0, The variation of water vapor density with altitude can then

be written as

o}
v ~-kz
p, = P < 5 :)o e (82)

where the subscript zero refers to the cloud-top. The variation of atmos-

pheric density with altitude is

- o z/H
P = Py (83)
where H is the scale height. For a nitrogen atmosphere with a temperature
of 235K and g = 880 cm/sec?, H = 7.9 km. Substituting (83) into (82), we

have

e-(0.127+k)z

P, = (pv)o . (84)

The integral of (84) with respect to height must be equal to the observed

total amount of water vapor above the cloud,

[>] -]

fpvdz - (pv)o f e—(0.127+k)z . (85)

(¢} (o}

Integrating the right hand side of (85) and solving for (pv) s we find
(o]

00

p - -,
("v)o = (0,127 + k) J p,dz - (86)
(o]

The mixing ratio at the cloud top can then be obtained from (pv/p)o’ where

Po is computed from

= 2P (87)

P %*
RT

0
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where p and T are the pressure (90 mb and 600 mb) and temperature (235K)

at the cloud top, and R? is the universal gas constant. Cloud-top mixing
ratios computed in this manner are shown in Table 1 for the k = 0,375 and
k = 0.56, It is apparent from Table 1 that these mixing ratios are much
closer to the required saturation mixing ratios and, in fact, saturation
would occur for the data of Bottema et al. (1964) in the 90 mb case for

k = 0.56.

Thus, at least for the observations of Bottema et al.(1964), the

observed water vapor amounts are compatible with an ice crystal cloud if

the cloud-top pressure is about 90 mb, the cloud-top temperature is 235K
or less, and the water vapor mixing ratio decreases with altitude at a
rate comparable to that in the earth's upper troposphere. There is no
reason to believe that the assumption of a constant mixing ratio above the
cloud is better than the assumption of a logarithmic decrease. In fact,

a better case can be made for the assumption of a logarithmic decrease
since, if the clouds are composed of water substance, the variation of
mixing ratio with altitude might be similar to that observed above ter-
restrial clouds. A reasonable estimate of such a variation is the average
value of the upper tropospheric variation of mixing ratio in the earth's
atmosphere. As indicated above, this value leads, under certain conditions,
to cloud-top mixing ratios compatible with the presence of clouds composed
of water substance. Thus, we may conclude that compatibility between the
observed water vapor amounts and the presence of water clouds on Venus can
be achieved under certain conditions. Or, put another way, the observed
water vapor amounts, at the present state of our knowledge are not incom~

patible with the presence of water clouds on Venus.
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